Advanced Search

Cancel
Found: 5 Piece 0.000 sn
- You can use the 'AND' / 'OR' / 'NOT' option for the things you want to add or remove.
- You can return to normal search by pressing the Cancel button.
Filters
Filters
Found: 5 Piece 0.000 sn
Researcher [1]
UN Sustainable Development [1]
Faculty / Institute [1]
Publication type [1]
Publication year [3]
Language [1]
Index Type [2]
National/International [1]
Access to Files

A novel impedimetric biosensor based on graphene oxide/gold nanoplatform for detection of DNA arrays

Ali Osman SOLAK

A highly sensitive method for detection of DNA hybridization was developed. This method was based on the modification of glassy carbon electrode with gold nanoparticles (AuNPs) involving p-aminothiophenol (ATP) functionalized graphene oxide (GO). This GO was used as a platform for impedimetric genosensing using 5′-TA GGG CCA CTT GGA CCT-(CH2)3-SH-3′ single-stranded probe (ss-DNA), 5′-AGG TCC AAG TGG CCC TA-3′ (target DNA), 5′-SH-C6-TAG GGC CA-3′ (non-complementary-1) and 5′-SH-C6-TGC CCG TTA CG 3-′ (non-complementary-2) oligonucleotide sequences. The film exhibited excellent properties for imm ...More

Access to Files

Syntheses and modifications of bisdiazonium salts of 3,8-benzo[c]cinnoline and 3,8-benzo[c]cinnoline 5-oxide onto glassy carbon electrode and the characterization of the modified surfaces

Ali Osman SOLAK

The goal of this study was to prepare novel glassy carbon electrode surfaces using two similar bis-diazonium salts, 3,8-benzo[c]cinnoline (3,8-BCC-BDAS) and 3,8-benzo[c]cinnoline 5-oxide (3,8-BCCNO-BDAS) at the glassy carbon (GC) surface. These diazonium salts were reduced electrochemically and covalently electrografted onto the glassy carbon electrode surface to form modified electrodes. Electrochemical reduction of 3,8-BCC-BDAS and 3,8-BCCNO-BDAS salts on the electrode surface yielded a compact and stable film. The existence of BCC moieties on the GC surface was characterized by X-ray photoe ...More

Access to Files

Determination of pK a of benzoic acid- and p-aminobenzoic acid-modified platinum surfaces by electrochemical and contact angle measurements

Ali Osman SOLAK

Acidity constant values of benzoic acid (BA)-modified platinum electrode (Pt-BA) and p-aminobenzoic acid (pABA)-modified platinum electrode (Pt-NHBA) surfaces were determined using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and contact angle measurements (CAM). Diazonium tetrafluoroborate salt reduction and pABA oxidation reactions were used to prepare (Pt-BA) and (Pt-NHBA) surfaces, respectively. Both surfaces exhibited pH dependence with [Fe(CN)6]3−/4− redox probe solutions at different pH; this allowed us to estimate the surface pK a values. Acidity constants for ...More

Access to Files

High energetic body source and strong antioxidant quercetin, morin and rutin: Their covalent grafting onto the glassy carbon electrode surfaces and investigation of surface properties

Ali Osman SOLAK

Herein, electrochemical oxidation and grafting of quercetin, morin and rutin as important biological molecules has been studied with the cyclic voltammetry technique by using a glassy carbon electrode. Electrochemical studies have been performed potentiostatically within a one-compartment three-electrode cell at room temperature. Glassy carbon electrode was used as a working electrode and Pt was used as a wire counter electrode. Ag/Ag+ (10 mM AgNO3), non-aqueous reference electrode calibrated to the E1/2 of ferrocene redox probe and Ag/AgCl/KCl (sat.), an aqueous reference electrode calibrated ...More

Access to Files

Spectroscopic and Electrochemical Characterization of Benzoylglycine-Modified Glassy Carbon Electrode: Electrocatalytic Effect Towards Dioxygen Reduction in Aqueous Media

Ali Osman SOLAK

Present work aims to create a benzoylglycine (BG)-modified glassy carbon (GC) substrate exploiting the electroreduction of diazonium salts. Dopamine was used to confirm the attachment of benzoylglycine molecules onto the glassy carbon surface by observing the blockage of the electron transfer using cyclic voltammetry (CV). BG-modified GC surface (BG-GC) was also characterized by Raman spectroscopy and electrochemical impedance spectroscopy (EIS) techniques. The ellipsometric thickness of the BG film was measured as approximately 14 nm for seven CV cycles. The electrocatalytic effect of BG-GC e ...More

Our obligations and policy regarding cookies are subject to the TR Law on the Protection of Personal Data No. 6698.
OK

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms