Deep Reinforcement Learning Enabled Inverters: Strengthening RES Integration in Grids with Electric Arc Furnaces

This paper presents development of a controller system for grid-supporting inverters to integrate renewable energy sources (RES) to the power grid for the challenging conditions of the existence of intermittent loads such as electric arc furnaces (EAFs). A deep-learning based method using Deep Deterministic Policy Gradient (DDPG), which is a Reinforcement Learning (RL) approach, is used for grid modeling, voltage and phase angle estimation, and control of the grid-supporting inverter. The goal is to develop a grid-supporting inverter which produces virtual inertia, stabilizes the grid frequency problems originating from intermittent loads and enables seamless integration of renewable energy sources (RES) to the power system. DDPG usage eliminates the need for some traditional estimation tools, such as Fast Fourier Transform (FFT), Synchronous Reference Frame (SRF) and low-pass filters, which are typically used methods for determining controller loop set-points. Moreover, with the proposed deep-learning based system, parameter tunings of the classical PID based controllers are avoided. The proposed system has been verified and tested in the simulation environment using actual field data collected at the transformer substations supplying EAF plants. It has been shown that the DDPG-based control system offers a fast and efficient control mechanism for maintaining the frequency stability of power systems. It is suggested that, this innovative approach can play a pivotal role in promoting the widespread adoption of RES to the system for the challenging conditions of intermittent loads.

Keyword: deep deterministic policy gradient (DDPG); electric arc furnace (EAF); grid-supporting inverter; power quality (PQ); power system frequency; power system inertia; reinforcement learning (RL); renewable energy sourses (RES); voltage fluctuation

Көрүүлөр
3
30.09.2024 күндөн тартып
Жүктөлгөн
1
30.09.2024 күндөн тартып
Акыркы кирүү датасы
12 Ekim 2024 07:52
Google текшерүү
Басыңыз
Толук текст
Толук көрүнүш
Басылманын аты
(dc.title)
Deep Reinforcement Learning Enabled Inverters: Strengthening RES Integration in Grids with Electric Arc Furnaces
Автор/лор
(dc.contributor.yazarlar)
Ebrahim Balouji, Ozgul Salor, Safwan Al Khatib
Басылманын түрү
(dc.type)
Makale
Тили
(dc.language)
İngilizce
Жарыяланган жылы
(dc.date.issued)
2024
Улуттук/Эл аралык
(dc.identifier.ulusaluluslararasi)
Uluslararası
Булагы
(dc.relation.journal)
IEEE Transactions on Industry Applications
Саны
(dc.identifier.issue)
Published online: 17 September 2024
ISSN/ISBN
(dc.identifier.issn)
ISSN: 0093-9994; Online ISSN: 1939-9367
Басмаканасы
(dc.publisher)
IEEE Xplore Digital Librar, USA
Маалымат базалар
(dc.contributor.veritaban)
Web of Science Core Collection
Маалымат базалар
(dc.contributor.veritaban)
IEEE Xplore
Маалымат базалар
(dc.contributor.veritaban)
Scopus
Индекс түрү
(dc.identifier.index)
SCI Expanded
Индекс түрү
(dc.identifier.index)
Scopus
Импакт-фактору
(dc.identifier.etkifaktoru)
4,2 / 2023-WOS / Son 5 yıl: 4,5
Қысқаша
(dc.description.abstract)
This paper presents development of a controller system for grid-supporting inverters to integrate renewable energy sources (RES) to the power grid for the challenging conditions of the existence of intermittent loads such as electric arc furnaces (EAFs). A deep-learning based method using Deep Deterministic Policy Gradient (DDPG), which is a Reinforcement Learning (RL) approach, is used for grid modeling, voltage and phase angle estimation, and control of the grid-supporting inverter. The goal is to develop a grid-supporting inverter which produces virtual inertia, stabilizes the grid frequency problems originating from intermittent loads and enables seamless integration of renewable energy sources (RES) to the power system. DDPG usage eliminates the need for some traditional estimation tools, such as Fast Fourier Transform (FFT), Synchronous Reference Frame (SRF) and low-pass filters, which are typically used methods for determining controller loop set-points. Moreover, with the proposed deep-learning based system, parameter tunings of the classical PID based controllers are avoided. The proposed system has been verified and tested in the simulation environment using actual field data collected at the transformer substations supplying EAF plants. It has been shown that the DDPG-based control system offers a fast and efficient control mechanism for maintaining the frequency stability of power systems. It is suggested that, this innovative approach can play a pivotal role in promoting the widespread adoption of RES to the system for the challenging conditions of intermittent loads.
Қысқаша
(dc.description.abstract)
Keyword: deep deterministic policy gradient (DDPG); electric arc furnace (EAF); grid-supporting inverter; power quality (PQ); power system frequency; power system inertia; reinforcement learning (RL); renewable energy sourses (RES); voltage fluctuation
URL
(dc.source.url)
https://ieeexplore.ieee.org/document/10682460
DOI
(dc.identifier.doi)
10.1109/TIA.2024.3462918
Факультет / Институт
(dc.identifier.fakulte)
Mühendislik Fakültesi
Бөлүмү
(dc.identifier.bolum)
Elektrik-Elektronik Mühendisliği Bölümü
Мекемедеги автор(лор)
(dc.contributor.author)
Özgül SALOR-DURNA
Каттоо №
(dc.identifier.kayitno)
BLDEE7840B
Каттоо киргизүү датасы
(dc.date.available)
2024-09-30
Эскертме (Жарыяланган жылы)
(dc.identifier.notyayinyili)
Scopus Early Access: 2024
Предметтик рубрикатор
(dc.subject)
deep deterministic policy gradient (DDPG)
Предметтик рубрикатор
(dc.subject)
electric arc furnace (EAF)
Предметтик рубрикатор
(dc.subject)
grid-supporting inverter
Предметтик рубрикатор
(dc.subject)
power quality (PQ)
Предметтик рубрикатор
(dc.subject)
power system frequency
Предметтик рубрикатор
(dc.subject)
power system inertia
Предметтик рубрикатор
(dc.subject)
reinforcement learning (RL)
Предметтик рубрикатор
(dc.subject)
renewable energy sourses (RES)
Предметтик рубрикатор
(dc.subject)
voltage fluctuation
Анализдер
Nəşr Baxılması
Nəşr Baxılması
Байланышкан өлкөлөр
Байланышкан шаарлар
Биздин милдеттенмелер жана cookie саясаты ТР № 6698- жеке маалыматтарды коргоо мыйзамы менен камтылган.
Макул

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms