On constraint manifolds of spatial closed chains in Lorentzian space

The objective of this paper is to explore the unexplored algebraic representations of the constraint manifolds associated with 4C and 6C spatial closed chains in Lorentzian space. Initially, we establish the structure equations of spatial closed chains by utilizing the structure equations for spatial open chains in Lorentzian space. Subsequently, we employ these structure equations to derive the algebraic expressions defining the constraint manifolds of 4C and 6C spatial closed chains in Lorentzian space, considering factors such as the causal character of the first link and the rotational axis of the cylindrical joint. This study will finalize all algebraic representations of constraint manifolds for spacelike and timelike mechanisms in Lorentzian space.

Keyword: constraint manifold; image space; open and closed chains; split quaternion; structure equation

Көрүүлөр
1
04.09.2024 күндөн тартып
Жүктөлгөн
1
04.09.2024 күндөн тартып
Акыркы кирүү датасы
13 Eylül 2024 12:21
Google текшерүү
Басыңыз
Толук текст
Толук көрүнүш
Басылманын аты
(dc.title)
On constraint manifolds of spatial closed chains in Lorentzian space
Автор/лор
(dc.contributor.yazarlar)
Buşra Aktaş, Olgun Durmaz, Öznur Aydin
Басылманын түрү
(dc.type)
Makale
Тили
(dc.language)
İngilizce
Жарыяланган жылы
(dc.date.issued)
2024
Улуттук/Эл аралык
(dc.identifier.ulusaluluslararasi)
Uluslararası
Булагы
(dc.relation.journal)
International Journal of Geometric Methods in Modern Physics
Саны
(dc.identifier.issue)
Published online: 23 August 2024
ISSN/ISBN
(dc.identifier.issn)
ISSN: 0219-8878; Online ISSN: 1793-6977
Басмаканасы
(dc.publisher)
World Scientific, Singapore
Маалымат базалар
(dc.contributor.veritaban)
Web of Science Core Collection
Маалымат базалар
(dc.contributor.veritaban)
World Scientific
Маалымат базалар
(dc.contributor.veritaban)
Scopus
Индекс түрү
(dc.identifier.index)
SCI Expanded
Индекс түрү
(dc.identifier.index)
Scopus
Импакт-фактору
(dc.identifier.etkifaktoru)
2,1 / 2023-WOS / Son 5 yıl: 1,8
Қысқаша
(dc.description.abstract)
The objective of this paper is to explore the unexplored algebraic representations of the constraint manifolds associated with 4C and 6C spatial closed chains in Lorentzian space. Initially, we establish the structure equations of spatial closed chains by utilizing the structure equations for spatial open chains in Lorentzian space. Subsequently, we employ these structure equations to derive the algebraic expressions defining the constraint manifolds of 4C and 6C spatial closed chains in Lorentzian space, considering factors such as the causal character of the first link and the rotational axis of the cylindrical joint. This study will finalize all algebraic representations of constraint manifolds for spacelike and timelike mechanisms in Lorentzian space.
Қысқаша
(dc.description.abstract)
Keyword: constraint manifold; image space; open and closed chains; split quaternion; structure equation
URL
(dc.rights)
https://www.worldscientific.com/doi/10.1142/S0219887824502773
DOI
(dc.identifier.doi)
10.1142/S0219887824502773
Факультет / Институт
(dc.identifier.fakulte)
Fen Fakültesi
Бөлүмү
(dc.identifier.bolum)
Matematik Bölümü
Мекемедеги автор(лор)
(dc.contributor.author)
Olgun DURMAZ
Каттоо №
(dc.identifier.kayitno)
BLB1BE08A6
Каттоо киргизүү датасы
(dc.date.available)
2024-09-04
Эскертме (Жарыяланган жылы)
(dc.identifier.notyayinyili)
Scopus Early Access: AUG 2024
Wos No
(dc.identifier.wos)
WOS:001306483100001
Предметтик рубрикатор
(dc.subject)
constraint manifold
Предметтик рубрикатор
(dc.subject)
image space
Предметтик рубрикатор
(dc.subject)
open and closed chains
Предметтик рубрикатор
(dc.subject)
split quaternion
Предметтик рубрикатор
(dc.subject)
structure equation
Анализдер
Nəşr Baxılması
Nəşr Baxılması
Байланышкан өлкөлөр
Байланышкан шаарлар
Биздин милдеттенмелер жана cookie саясаты ТР № 6698- жеке маалыматтарды коргоо мыйзамы менен камтылган.
Макул

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms