On constraint manifolds of spatial closed chains in Lorentzian space

The objective of this paper is to explore the unexplored algebraic representations of the constraint manifolds associated with 4C and 6C spatial closed chains in Lorentzian space. Initially, we establish the structure equations of spatial closed chains by utilizing the structure equations for spatial open chains in Lorentzian space. Subsequently, we employ these structure equations to derive the algebraic expressions defining the constraint manifolds of 4C and 6C spatial closed chains in Lorentzian space, considering factors such as the causal character of the first link and the rotational axis of the cylindrical joint. This study will finalize all algebraic representations of constraint manifolds for spacelike and timelike mechanisms in Lorentzian space.

Keyword: constraint manifold; image space; open and closed chains; split quaternion; structure equation

Görüntülenme
7
04.09.2024 tarihinden bu yana
İndirme
1
04.09.2024 tarihinden bu yana
Son Erişim Tarihi
13 Ekim 2024 10:11
Google Kontrol
Tıklayınız
Tam metin
Detaylı Görünüm
Yayın Adı
(dc.title)
On constraint manifolds of spatial closed chains in Lorentzian space
Yazar/lar
(dc.contributor.yazarlar)
Buşra Aktaş, Olgun Durmaz, Öznur Aydin
Yayın Türü
(dc.type)
Makale
Dil
(dc.language)
İngilizce
Yayımlanma Yılı
(dc.date.issued)
2024
Ulusal/Uluslararası
(dc.identifier.ulusaluluslararasi)
Uluslararası
Kaynak
(dc.relation.journal)
International Journal of Geometric Methods in Modern Physics
Süreli Sayı
(dc.identifier.issue)
Published online: 23 August 2024
ISSN/ISBN
(dc.identifier.issn)
ISSN: 0219-8878; Online ISSN: 1793-6977
Yayıncı
(dc.publisher)
World Scientific, Singapore
Veri Tabanları
(dc.contributor.veritaban)
Web of Science Core Collection
Veri Tabanları
(dc.contributor.veritaban)
World Scientific
Veri Tabanları
(dc.contributor.veritaban)
Scopus
İndex Türü
(dc.identifier.index)
SCI Expanded
İndex Türü
(dc.identifier.index)
Scopus
Etki Faktörü
(dc.identifier.etkifaktoru)
2,1 / 2023-WOS / Son 5 yıl: 1,8
Özet
(dc.description.abstract)
The objective of this paper is to explore the unexplored algebraic representations of the constraint manifolds associated with 4C and 6C spatial closed chains in Lorentzian space. Initially, we establish the structure equations of spatial closed chains by utilizing the structure equations for spatial open chains in Lorentzian space. Subsequently, we employ these structure equations to derive the algebraic expressions defining the constraint manifolds of 4C and 6C spatial closed chains in Lorentzian space, considering factors such as the causal character of the first link and the rotational axis of the cylindrical joint. This study will finalize all algebraic representations of constraint manifolds for spacelike and timelike mechanisms in Lorentzian space.
Özet
(dc.description.abstract)
Keyword: constraint manifold; image space; open and closed chains; split quaternion; structure equation
URL
(dc.source.url)
https://www.worldscientific.com/doi/10.1142/S0219887824502773
DOI
(dc.identifier.doi)
10.1142/S0219887824502773
Fakültesi / Enstitütü
(dc.identifier.fakulte)
Fen Fakültesi
Bölümü
(dc.identifier.bolum)
Matematik Bölümü
Kurumdaki Yazar/lar
(dc.contributor.author)
Olgun DURMAZ
Kayıt No
(dc.identifier.kayitno)
BLB1BE08A6
Kayıt Giriş Tarihi
(dc.date.available)
2024-09-04
Not (Yayımlanma Yılı)
(dc.identifier.notyayinyili)
Scopus Early Access: AUG 2024
Wos No
(dc.identifier.wos)
WOS:001306483100001
Konu Başlıkları
(dc.subject)
constraint manifold
Konu Başlıkları
(dc.subject)
image space
Konu Başlıkları
(dc.subject)
open and closed chains
Konu Başlıkları
(dc.subject)
split quaternion
Konu Başlıkları
(dc.subject)
structure equation
Analizler
Yayın Görüntülenme
Yayın Görüntülenme
Erişilen Ülkeler
Erişilen şehirler
Yükümlülüklerimiz ve çerez politikamız T.C. 6698 sayılı Kişisel Verilerin Korunması Kanunu kapsamındadır.
Tamam

creativecommons
Bu site altında yer alan tüm kaynaklar Creative Commons Alıntı-GayriTicari-Türetilemez 4.0 Uluslararası Lisansı ile lisanslanmıştır.
Platforms